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Project Activities for Reporting Period: 

The following relevant tasks in the proposal have been completed: 

 Adjusted the procedure for calculating the CO2 behavior in the near field based on 

assumption of isentropic flow relationships. More details are provided in the Appendix. 

 Used Ansys Fluent to conduct CFD simulation for the 28 cases based on the results of the 

calculation for the near field. More details are provided in the Appendix. 

 Held the second TAP meeting with PHMSA representatives. 

 Present in the 2023 PHMSA R&D Forum. 

 The review paper of CO2 pipeline release and dispersion was officially published in the 

Journal of Loss Prevention in the Process Industries.   

 

Project Financial Activities Incurred during the Reporting Period: 

Based on the proposed budget, the cost is broken down into two parts: 

 Efforts from the PI Dr. Wang for about 0.25 month. 

 Efforts and work by graduate students, Chi-Yang Li and Jazmine Aiya D. Marquez, 

totally for about 3 months for each of them. 

 

Project Activities with Cost Share Partners: 

Dr. Wang’s time and efforts (0.25 month) in this quarterly period are used as cost share. He 

devoted his time to supervise the graduate students, review all paperwork, organize the second 

TAP meeting, travel to Washington DC to attend PHMSA R&D Forum, and prepare the 

progress report. 

 

mailto:qwang@tamu.edu
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Project Activities with External Partners: 

During the 2023 PHMSA R&D Forum, Dr. Wang discussed the intention to participate in the 

ongoing planning of the Skylark Joint Industry Project (JIP) with Simon Gant (Project 

Leader, UK HSE) and Mary McDaniel. Simon Gant expressed agreement with TAMU/PHMSA 

involvement, particularly in the Computational Fluid Dynamics (CFD) modeling component. 

Mary McDaniel also conveyed strong interest and support for this initiative. Subsequently, a 

meeting took place on Teams with PHMSA staff (Nusnin Akter, Ashley Kroon, Basim Bacenty) 

and Dr. Wang to explore the potential extension of the CAAP project, including additional tasks 

within the Skylark JIP framework. On December 6, 2023, Dr. Wang officially submitted a 

statement of work, along with a budget and budget justification, to PHMSA for their 

consideration in joining the Skylark JIP. 

 

Potential Project Risks: 

For the future parametric study using Ansys Fluent, incorporating terrain information has 

increased the computation time. We anticipate that performing hundreds of CFD simulations in 

the future will require a significant amount of time. I have assigned two PhD students to work on 

this project to accelerate the project. 

 

Future Project Work: 

 Continuously perform parametric studies at TAMU HPRC for all dispersion scenarios by 

using Ansys Fluent with the numeric simulation setup with the calculation results. For 

other parameters of concern, besides the 5 categories of terrains, the variables for pipeline 

characteristics and weather conditions are as Table 1 (updated after recommendations 

from technical panel). 

 

Table 1. The variables for pipeline characteristics and weather conditions. 

 Variable High Medium Low 

Pipeline characteristics 

pressure (MPa) 20 10 1 

diameter (inch) 30 16 4 

flow rate (MMcfd) 1300 590 30 

Weather conditions 

wind speed (mph) 25 14 3 

temperature (°F) 100 60 0 
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 Continuously expand the database for the PIR for CO2 pipelines dispersion based on the 

simulation results with the setup above. 

 Perform parametric studies to search for the suitable machine learning techniques and 

corresponding hyper-parameters for the machine-learning model. 

 

Potential Impacts to Pipeline Safety: 

 The variables for pipeline characteristics and weather conditions cover the upper limits 

and lower limits of the current industrial practices; therefore, the machine-learning model 

is believed to have accurate predictions for other CO2 pipelines in the range. 
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Appendix 

 

1. Calculating the CO2 behavior in the near field 

As mentioned in the previous report, the 10 times of the distance of Mach disc (xm) from the pipe 

could be considered as the distance of near field. 

𝑥𝑚 = 0.6455 × 𝑑𝑒 ×√
𝑃0
𝑃𝑎

 

Where 𝑑𝑒 is the diameter of the nozzle exit, 𝑃0 is the stagnation pressure, and 𝑃𝑎 is the 

ambient pressure. 

Then, we could calculate the velocity at the end of the near field based on the assumptions of no 

entrainment of ambient fluid, isentropic flow relationships, and constant pressure at the release 

point of rupture pipeline. 

𝑉𝐶𝑂2 = 𝑉0

{
 
 

 
 

𝐶𝐷 +

[1 −
𝑃𝑎
𝑃0
× (

2
𝛾 + 1)

−𝛾
𝛾−1

]

𝛾𝐶𝐷

}
 
 

 
 

 

Where 𝑉𝐶𝑂2 is the velocity of CO2 in the atmosphere, 𝑉0 is the velocity in the pipeline, 𝐶𝐷 

(1 for the well-rounded nozzle) is the volume discharge coefficient, 𝛾 (1.30 for CO2) is 

the ratio of the heat capacities. 

In our previous simulations on the near field, huge amount of air entrained and occupied nearly 

70% weight at the end of the near field, due to the significant pressure drops for the CO2 

pipelines from pipeline to atmosphere. We assumed the fluid composition at the end of near field 

are 30% CO2 and 70% air. Therefore, we could obtain the velocity of fluid as below. 

𝑉𝑎 = 𝑉𝑤𝑖𝑛𝑑 × 0.7 + 𝑉𝐶𝑂2 × 0.3 

Where 𝑉𝑎 is the velocity of fluid in the atmosphere, and 𝑉𝑤𝑖𝑛𝑑 is the velocity of wind. 

Because the pressure in the atmosphere is relatively low (1 atm), we could derive the cross-

sectional area of the fluid based on the ideal gas law and the conservation of mass equation.  

Additionally, because the scenario of concern is that CO2 release from both ends of the ruptured 

pipeline, we apply twice the mass flow rate for the simulations. Due to the velocity of the fluid is 

a critical factor for the dispersion, we apply twice the release cross-sectional area of the fluid 

with the velocity obtained above to run the simulations.  

Consequently, we could use the composition, velocity, and area to represent the behavior of near 

field and use Ansys Fluent to simulate the dispersion in the far field.  
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According to Table 1, take the situation of 1 MPa gauge pressure, 30 inch pipeline diameter, 

1300 mmcfd mass flow rate, 3 mph wind speed, and 100 °F ambient temperature as an example.  

We could calculate the velocity of fluid, the distance of near field, and the radius of cross-

sectional area of fluid, as 2.25 meter per second, 49.11 meter, and 24.32 meter, respectively. 

 

2. Simulation results for 28 cases 

With the information of the calculations on the near field, we could create suitable geometry and 

use the necessary factors for the subsequent CFD simulation on Ansys Fluent. Then, we ran 

simulations for 28 cases and the results are shown in Table 2. 

For the situation of 1 MPa gauge pressure, 30 inch pipeline diameter, 1300 MMcfd mass flow 

rate, 3 mph wind speed, and 100 °F ambient temperature, we simulated the CO2 dispersion over 

the plain geometry (Figure 1). The contour for CO2 mole fraction on the top view and side view 

are shown in Figure 2 and Figure 3. Moreover, the CO2 mole fraction dispersion profile is as 

Figure 4. 

 

Figure 1. Plain (Monticello, Mississippi). 
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Figure 2. The contour for CO2 mole fraction on the top view. 

 

Figure 3. The contour for CO2 mole fraction on the side view. 
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Figure 4. CO2 mole fraction versus distance from the release point. 
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Table 2. Simulation results for 28 cases. 

Geometry 
gauge pressure 

(MPa) 

diameter 

(inch) 

flow rate 

(mmcfd) 

wind speed 

(mph) 

ambient 

temperature (°F) 

Distance 

for 9% (m) 

Distance 

for 4% (m) 

Distance 

for 1% (m) 

Plain 

(Monticello 

Mississippi) 

10 30 1300 3 100 166.17  556.07  1657.27  

1 4 30 25 0 14.50  28.59  62.64  

1 4 30 14 0 14.78  31.19  81.18  

1 4 30 3 0 15.04  34.18  100.89  

1 4 30 25 60 14.50  28.59  62.67  

1 4 30 14 60 14.78  31.20  80.92  

1 4 30 25 100 14.49  28.84  55.57  

1 4 30 3 60 15.09  34.68  102.67  

1 4 30 14 100 14.77  31.37  79.99  

1 4 30 3 100 15.04  34.17  100.65  

Hill with 

steep slope 

(Raton, New 

Mexico) 

1 4 30 25 0 9.42  20.56  49.61  

1 4 30 14 0 9.55  22.56  60.38  

1 4 30 3 0 9.72  29.99  93.56  

1 4 30 25 60 9.42  20.51  49.74  

1 4 30 14 60 9.55  22.42  60.13  

1 4 30 25 100 9.42  20.50  49.80  

1 4 30 3 60 9.72  30.37  93.42  

1 4 30 14 100 9.55  22.56  60.36  

1 4 30 3 100 9.72  30.38  93.41  

Valley with 

moderate 

slope 

(Vernal, Utah) 

1 4 30 25 0 8.45  18.22  82.37  

1 4 30 14 0 8.57  18.78  85.53  

1 4 30 3 0 8.79  28.46  111.57  

1 4 30 25 60 8.44  18.18  82.60  

1 4 30 14 60 8.57  18.78  85.30  

1 4 30 25 100 8.45  18.22  82.49  

1 4 30 3 60 8.79  28.55  111.67  

1 4 30 14 100 8.57  18.78  85.39  

1 4 30 3 100 8.79  28.46  111.68  
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